Acta Crystallographica Section A

Foundations of

 CrystallographyISSN 0108-7673

Received 23 June 2000
Accepted 26 September 2000

A pseudoinverse for Frank's formula

Alfredo Gómez* and David Romeu

Instituto de Física, UNAM, México. Correspondence e-mail: alfredo@fenix.ifisicacu.unam.mx

In a previous communication, it has been argued that in the Frank-Bilby equation and in the o-lattice equations a pseudoinverse must be used when the reduced displacement-field matrices are not invertible. Here an explicit expression for the pseudoinverse of Frank's formula is derived using a direct vector approach.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved
communication is to give a succinct vector derivation of T^{*} and, consequently, of the (pseudo-)inverse of Frank's equation.

2. A pseudoinverse for T

Consider the transformation T given by

$$
\begin{equation*}
T \mathbf{p}=\mathbf{d} \times \mathbf{p} \tag{7}
\end{equation*}
$$

(where d is a given vector), then it is straightforward to check that

$$
\begin{align*}
T T T \mathbf{p} & =\mathbf{d} \times[\mathbf{d} \times(\mathbf{d} \times \mathbf{p})] \\
& =\mathbf{d} \times[(\mathbf{d} \cdot \mathbf{p}) \mathbf{d}-(\mathbf{d} \cdot \mathbf{d}) \mathbf{p}] \\
& =-|\mathbf{d}|^{2} \mathbf{d} \times \mathbf{p} \\
& =-|\mathbf{d}|^{2} T \mathbf{p} \tag{8}
\end{align*}
$$

This in turn means that the pseudoinverse of T is

$$
\begin{equation*}
T^{*}=-\left[1 /|\mathbf{d}|^{2}\right] T \tag{9}
\end{equation*}
$$

since it satisfies the pseudoinverse conditions (4) (the fact that $T^{T}=-T$ has been used).

In terms of cross products,

$$
\begin{equation*}
T^{*} \mathbf{p}=\left(-1 /|\mathbf{d}|^{2}\right)(\mathbf{d} \times \mathbf{p}) \tag{10}
\end{equation*}
$$

3. An inverse to Frank's formula

Putting things together,

$$
\begin{equation*}
\mathbf{p}=T^{*} \mathbf{b}^{m}=\{-1 /[2 \sin (\theta / 2)]\}\left(\mathbf{c} \times \mathbf{b}^{m}\right) \tag{11}
\end{equation*}
$$

This formula gives a (pseudo) inverse to Frank's formula.

4. Discussion

If the transformation T does not have an inverse then it can not be injective. This means that it is possible to have P and P^{\prime} with $P \neq P^{\prime}$ and such that $T(P)=T\left(P^{\prime}\right)$. Notice that $T\left(P-P^{\prime}\right)=0$ so $P-P^{\prime}$ lies in the kernel of T. For this reason, the P corresponding to a given \mathbf{b}^{m} is not unique; if P_{0} is given by $T^{*} \mathbf{b}^{m}$ then all other possible values for P are of the form $P_{0}+k$, where k is any element in the kernel of T. This is well known in o-lattice theory (Bollmann, 1982) where the values of P form lines or planes (depending on the rank of T).

5. Conclusions

An alternative, vector derivation of the pseudoinverse to Frank's formula has been provided.

short communications

This work was supported by grant 25125-A from CONACYT.

References

Bollmann, W. (1982). Crystal Lattices, Interfaces, Matrices. ISBN 2-88105-000X. Published by the author.

Gómez, A. \& Romeu, D. (2000). Int. J. Mod. Phys. B, 14, 1129-1137.
Noble, B. \& Daniel, J. W. (1989). Applied Linear Algebra. New York: PrenticeHall.
Romeu, D. \& Gómez, A. (2001). In preparation.
Sutton, A. P. \& Balluffi, R. W. (1996). Interfaces in Crystalline Materials. Oxford University Press.

