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In a previous communication, it has been argued that in the Frank±Bilby

equation and in the o-lattice equations a pseudoinverse must be used when the

reduced displacement-®eld matrices are not invertible. Here an explicit

expression for the pseudoinverse of Frank's formula is derived using a direct

vector approach.

1. Introduction

In the geometrical analysis of grain boundaries, the Frank±Bilby

equation (see for instance Sutton & Balluf®, 1996) plays a particularly

important role in the determination of dislocation content.

Let Lw and Lb be two lattices (`white' and `black') and let R��; c�
be the rotation through an angle � and around the axis c (jcj � 1) that

takes lattice Lw into the lattice Lb. The net dislocation Burger's

vector b traversed when moving from the origin to the point P is

given by the Frank±Bilby equation (Sutton & Balluf®, 1996)

�I ÿ Rÿ1��; c��p � b; �1�
where T � �I ÿ Rÿ1��; c�� is the reduced displacement ®eld, in the

terminology of Bollmann (1982). The previous equation assumes a

very simple form when one takes as reference lattice the so-called

median lattice (see, for instance, Sutton & Balluf®, 1996). The median

lattice is the lattice Lm obtained from Lw by a rotation through �=2

around c or, alternatively, obtained from Lb by a rotation through

ÿ�=2 around c. In terms of the median lattice, our equation becomes

�R��=2; c� ÿ Rÿ1��=2; c��p � bm; �2�
which can be re-cast in the so-called Frank formula (Sutton &

Balluf®, 1996):

2 sin��=2��c� p� � bm: �3�
It can be readily seen that this equation cannot be inverted to yield p

since det�I ÿ Rÿ1��; c�� � 0, however, in a previous communication

(GoÂ mez & Romeu, 2000), it has been argued that in such cases one

should use the Moore±Penrose pseudoinverse.

Given a matrix T, its (Moore±Penrose) pseudoinverse is the

unique matrix T� that satis®es the four conditions (Noble & Daniel,

1989)

T T�T � T

T�T T� � T�

�T T��T � �T T��
�T�T�T � �T�T�

�4�

If we de®ne

T � �R��=2; c� ÿ Rÿ1��=2; c��; �5�
then our contention is that the correct inverse formula should read

p � T�bm: �6�
An explicit calculation of T� using matrix methods has been

presented by Romeu & GoÂ mez (2001). The purpose of this short

communication is to give a succinct vector derivation of T� and,

consequently, of the (pseudo-)inverse of Frank's equation.

2. A pseudoinverse for T

Consider the transformation T given by

Tp � d� p �7�
(where d is a given vector), then it is straightforward to check that

T T Tp � d� �d� �d� p��
� d� ��d � p�dÿ �d � d�p�
� ÿjdj2d� p

� ÿjdj2Tp: �8�
This in turn means that the pseudoinverse of T is

T� � ÿ�1=jdj2�T �9�
since it satis®es the pseudoinverse conditions (4) (the fact that

TT � ÿT has been used).

In terms of cross products,

T�p � �ÿ1=jdj2��d� p�: �10�

3. An inverse to Frank's formula

Putting things together,

p � T�bm � fÿ1=�2 sin��=2��g�c� bm�: �11�
This formula gives a (pseudo) inverse to Frank's formula.

4. Discussion

If the transformation T does not have an inverse then it can not be

injective. This means that it is possible to have P and P0 with P 6� P0

and such that T�P� � T�P0�. Notice that T�Pÿ P0� � 0 so Pÿ P0 lies

in the kernel of T. For this reason, the P corresponding to a given bm

is not unique; if P0 is given by T�bm then all other possible values for

P are of the form P0 � k, where k is any element in the kernel of T.

This is well known in o-lattice theory (Bollmann, 1982) where the

values of P form lines or planes (depending on the rank of T).

5. Conclusions

An alternative, vector derivation of the pseudoinverse to Frank's

formula has been provided.
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