short communications

Acta Crystallographica Section A Foundations of Crystallography

ISSN 0108-7673

Received 23 June 2000 Accepted 26 September 2000

A pseudoinverse for Frank's formula

Alfredo Gómez* and David Romeu

Instituto de Física, UNAM, México. Correspondence e-mail: alfredo@fenix.ifisicacu.unam.mx

In a previous communication, it has been argued that in the Frank–Bilby equation and in the *o*-lattice equations a pseudoinverse must be used when the reduced displacement-field matrices are not invertible. Here an explicit expression for the pseudoinverse of Frank's formula is derived using a direct vector approach.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

1. Introduction

In the geometrical analysis of grain boundaries, the Frank–Bilby equation (see for instance Sutton & Balluffi, 1996) plays a particularly important role in the determination of dislocation content.

Let L^w and L^b be two lattices ('white' and 'black') and let $R(\theta, c)$ be the rotation through an angle θ and around the axis c ($|\mathbf{c}| = 1$) that takes lattice L^w into the lattice L^b . The net dislocation Burger's vector **b** traversed when moving from the origin to the point P is given by the Frank-Bilby equation (Sutton & Balluffi, 1996)

$$[I - R^{-1}(\theta, c)]\mathbf{p} = \mathbf{b},\tag{1}$$

where $T = [I - R^{-1}(\theta, c)]$ is the reduced displacement field, in the terminology of Bollmann (1982). The previous equation assumes a very simple form when one takes as reference lattice the so-called median lattice (see, for instance, Sutton & Balluffi, 1996). The median lattice is the lattice L^m obtained from L^w by a rotation through $\theta/2$ around **c** or, alternatively, obtained from L^b by a rotation through $-\theta/2$ around **c**. In terms of the median lattice, our equation becomes

$$[R(\theta/2, c) - R^{-1}(\theta/2, c)]\mathbf{p} = \mathbf{b}^m,$$
(2)

which can be re-cast in the so-called Frank formula (Sutton & Balluffi, 1996):

$$2\sin(\theta/2)(\mathbf{c} \times \mathbf{p}) = \mathbf{b}^m.$$
 (3)

It can be readily seen that this equation cannot be inverted to yield **p** since det $[I - R^{-1}(\theta, c)] = 0$, however, in a previous communication (Gómez & Romeu, 2000), it has been argued that in such cases one should use the Moore–Penrose pseudoinverse.

Given a matrix T, its (Moore–Penrose) pseudoinverse is the unique matrix T^* that satisfies the four conditions (Noble & Daniel, 1989)

$$T T^{*}T = T$$

$$T^{*}T T^{*} = T^{*}$$

$$(T T^{*})^{T} = (T T^{*})$$

$$(T^{*}T)^{T} = (T^{*}T)$$
(4)

If we define

$$T = [R(\theta/2, c) - R^{-1}(\theta/2, c)],$$
(5)

then our contention is that the correct inverse formula should read

$$\mathbf{p} = T^* \mathbf{b}^m. \tag{6}$$

An explicit calculation of T^* using matrix methods has been presented by Romeu & Gómez (2001). The purpose of this short

communication is to give a succinct vector derivation of T^* and, consequently, of the (pseudo-)inverse of Frank's equation.

2. A pseudoinverse for T

Consider the transformation T given by

Т

$$T\mathbf{p} = \mathbf{d} \times \mathbf{p} \tag{7}$$

(where **d** is a given vector), then it is straightforward to check that

$$T T \mathbf{p} = \mathbf{d} \times [\mathbf{d} \times (\mathbf{d} \times \mathbf{p})]$$

= $\mathbf{d} \times [(\mathbf{d} \cdot \mathbf{p})\mathbf{d} - (\mathbf{d} \cdot \mathbf{d})\mathbf{p}]$
= $-|\mathbf{d}|^2 \mathbf{d} \times \mathbf{p}$
= $-|\mathbf{d}|^2 T \mathbf{p}.$ (8)

This in turn means that the pseudoinverse of T is

$$T^* = -[1/|\mathbf{d}|^2]T \tag{9}$$

since it satisfies the pseudoinverse conditions (4) (the fact that $T^{T} = -T$ has been used).

In terms of cross products,

$$T^*\mathbf{p} = (-1/|\mathbf{d}|^2)(\mathbf{d} \times \mathbf{p}).$$
(10)

3. An inverse to Frank's formula

Putting things together,

$$\mathbf{p} = T^* \mathbf{b}^m = \{-1/[2\sin(\theta/2)]\}(\mathbf{c} \times \mathbf{b}^m).$$
(11)

This formula gives a (pseudo) inverse to Frank's formula.

4. Discussion

If the transformation T does not have an inverse then it can not be injective. This means that it is possible to have P and P' with $P \neq P'$ and such that T(P) = T(P'). Notice that T(P - P') = 0 so P - P' lies in the kernel of T. For this reason, the P corresponding to a given \mathbf{b}^m is not unique; if P_0 is given by $T^*\mathbf{b}^m$ then all other possible values for P are of the form $P_0 + k$, where k is any element in the kernel of T. This is well known in o-lattice theory (Bollmann, 1982) where the values of P form lines or planes (depending on the rank of T).

5. Conclusions

An alternative, vector derivation of the pseudoinverse to Frank's formula has been provided.

This work was supported by grant 25125-A from CONACYT.

References

- Bollmann, W. (1982). Crystal Lattices, Interfaces, Matrices. ISBN 2-88105-000-X. Published by the author.
- Gómez, A. & Romeu, D. (2000). Int. J. Mod. Phys. B, 14, 1129–1137. Noble, B. & Daniel, J. W. (1989). Applied Linear Algebra. New York: Prentice-Hall.
- Romeu, D. & Gómez, A. (2001). In preparation. Sutton, A. P. & Balluffi, R. W. (1996). *Interfaces in Crystalline Materials*. Oxford University Press.